Determination of the Water Quality of a Constructed Wetland Monitoring Fecal Indicator Bacteria

1Karina Quroz, 1Nora Rodriguez, 1Shelton Murinda, 1Mark Ibeke, and 1Stanley Park
1Department of Animal and Veterinary Sciences, California State Polytechnic University, Pomona
2USDA-ARS Salinity Laboratory, Riverside, CA
(*semurinda@cpp.edu)

Abstract

In 2015, the city of Ontario constructed the Mill Creek Wetlands, a natural treatment wetland facility to improve local water quality management, improve water quality for users downstream, and also serve as a recreational area for the community’s inhabitants. Bacteria (Escherichia coli, Streptococcus, and Enterococcus spp.) in the water has been testing higher in the last stop of filtration than at the start which means one of the filtering pools has stopped working. Our job was to collect water from the different sets of pools and try to see if STEC are present in the water. We tested these samples for eighteen months. Our tests were positive for both E. coli and Enterococcus spp. Additional testing is being done to further identify the types of E. coli, such as STEC, and types of Enterococcus spp., such as E. faecalis and E. faecium.

Introduction

Bacteria in the water is not a good sign, which is why the United States Environmental Protection Agency (USEPA) considers all presence of enterococci in water as polluted. The enterococci we will be focusing on is Enterococcus faecalis and Enterococcus faecium because both are found in feces. Gross! The other bacteria we are focusing on is E. coli. Some strains of E. coli may be harmless, while other strains, such as STEC O157:H7, are one of the causes of foodborne disease. A foodborne disease is caused by consuming a food product that is contaminated with the bad type of bacteria! The bad bacteria, STEC O157:H7, can cause severe sickness if consumed such as, bloody diarrhea and cramps. STEC can be found in the intestinal tract of animals, food, water, and soil. For this study, we will be testing samples on a jelly tray with buffer liquid and watch the samples flow across the jelly plate by using electric waves!

Materials and Methods

1. Collecting: Use the water samples from the ponds
2. Growing: Put the pond water and bacteria food in these trays (step left) to help us count and grow more bacteria
3. Isolating: Take water from the trays and put them on these different plates to isolate the different bacteria.
4. Amplifying: Use a PCR machine to grow thousands more bacteria so the bacteria can be identified as Enterococcus spp. and E. coli
5. Identifying: Put the PCR samples on a jelly tray with buffer liquid and watch the samples flow across the jelly plate by using electric waves!

Results

FIGURE 1: Illustration of the wetlands pond lay out.

FIGURE 2: Bacteria count from the start of the project

1. March 2018 Data

FIGURE 3: Bacteria count near the end of the project

3. September 2018 Data

Conclusion

✓ Microbial MPN counts continued to decrease with each monthly sample
✓ Achieved successful identification of E. coli and Enterococcus spp. utilizing 16SE1, 16SE2 (r), uidA-F, and STEC using stx1-F and stx1-R primers
✓ Igem and Glantz’s colony PCR method yielded less reliable results compared to the original PCR method used for DNA extraction

Future Studies

- Continue monitoring and identifying microbes by:
  - Collecting monthly samples from the wetlands.
  - Tracking MPN using the IDEXX system
  - Identifying microbes using PCR
- Refine our current PCR protocol by:
  - Establishing a more effective DNA extraction method
  - Implementing more control samples
  - Run more PCR trials utilizing primers mdF (F1), mdR (F2), sdF (E1), sdR (E2), to test for presence of E. faecium and E. faecalis

References

[Science & Technology, 42(13), 4076]